Horizontal Transfer of Non-LTR Retrotransposons from Arthropods to Flowering Plants
نویسندگان
چکیده
Even though lateral movements of transposons across families and even phyla within multicellular eukaryotic kingdoms have been found, little is known about transposon transfer between the kingdoms Animalia and Plantae. We discovered a novel non-LTR retrotransposon, AdLINE3, in a wild peanut species. Sequence comparisons and phylogenetic analyses indicated that AdLINE3 is a member of the RTE clade, originally identified in a nematode and rarely reported in plants. We identified RTE elements in 82 plants, spanning angiosperms to algae, including recently active elements in some flowering plants. RTE elements in flowering plants were likely derived from a single family we refer to as An-RTE. Interestingly, An-RTEs show significant DNA sequence identity with non-LTR retroelements from 42 animals belonging to four phyla. Moreover, the sequence identity of RTEs between two arthropods and two plants was higher than that of homologous genes. Phylogenetic and evolutionary analyses of RTEs from both animals and plants suggest that the An-RTE family was likely transferred horizontally into angiosperms from an ancient aphid(s) or ancestral arthropod(s). Notably, some An-RTEs were recruited as coding sequences of functional genes participating in metabolic or other biochemical processes in plants. This is the first potential example of horizontal transfer of transposons between animals and flowering plants. Our findings help to understand exchanges of genetic material between the kingdom Animalia and Plantae and suggest arthropods likely impacted on plant genome evolution.
منابع مشابه
Vertical evolution and horizontal transfer of CR1 non-LTR retrotransposons and Tc1/mariner DNA transposons in Lepidoptera species.
Horizontal transfer (HT) is a complex phenomenon usually used as an explanation of phylogenetic inconsistence, which cannot be interpreted in terms of vertical evolution. Most examples of HT of eukaryotic genes involve transposable elements. An intriguing feature of HT is that its frequency differs among transposable elements classes. Although HT is well known for DNA transposons and long termi...
متن کاملEARE-1, a Transcriptionally Active Ty1/Copia-Like Retrotransposon Has Colonized the Genome of Excoecaria agallocha through Horizontal Transfer
Long terminal repeat (LTR) retrotransposons constitute the majority of the content of angiosperm genomes, but their evolutionary dynamics remain poorly understood. Here, we report the isolation and characterization of a putative full-length (~9550 bp) Ty1/copia-like retrotransposon in Excoecaria agallocha and its evolution in Euphorbiaceae. The so-called EARE-1 is phylogenetically closely relat...
متن کاملRecent expansion of a new Ingi-related clade of Vingi non-LTR retrotransposons in hedgehogs.
Autonomous non-long terminal repeat (non-LTR) retrotransposons and their repetitive remnants are ubiquitous components of mammalian genomes. Recently, we identified non-LTR retrotransposon families, Ingi-1_AAl and Ingi-1_EE, in two hedgehog genomes. Here we rename them to Vingi-1_AAl and Vingi-1_EE and report a new clade "Vingi," which is a sister clade of Ingi that lacks the ribonuclease H dom...
متن کاملAn Ancient Transkingdom Horizontal Transfer of Penelope-Like Retroelements from Arthropods to Conifers.
Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic ...
متن کاملLong-term inheritance of the 28S rDNA-specific retrotransposon R2.
R2 is a non-long-terminal-repeat (LTR) retrotransposon that inserts specifically into 28S rDNA. R2 has been identified in many species of arthropods and three species of chordates. R2 may be even more widely distributed in animals, and its origin may be traceable to early animal evolution. In this study, we identified R2 elements in medaka fish, White Cloud Mountain minnow, Reeves' turtle, hagf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 35 شماره
صفحات -
تاریخ انتشار 2018